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Abstract

Asymmetric reduction of acetophenone by Cr(II)/amino acid/water/DMF system is reported. Chemical yields up to 94%,
enantiomeric excesses up to 74% were observed. The relevance to the Nozaki–Hiyama–Kishi reaction is discussed. © 1999
Elsevier Science S.A. All rights reserved.
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Asymmetric induction by transition metal complexes
is one of the most active fields in organic chemistry [1].
The so-called Nozaki–Hiyama–Kishi (N–H–K) re-
ductive C,C-bond coupling, which uses in situ gener-
ated organochromium reagents, is one of the most
versatile new methods in transition metal-assisted or-
ganic chemistry [2]. This reaction recently was com-
mented on as follows [3]: ‘‘An efficient enantioselective
version of the Nozaki–Hiyama–Kishi reaction—al-
though highly desirable—is still missing’’.

Here we describe a chromium(II)/amino acid/water/
DMF system for enantioselective ketone reduction

which represents the first breakthrough in this respect,
being correlated with the reductive step in the N–H–K
reaction.

The reagent used in this work was planned on the
basis of earlier solution equilibria studies [4]. Acetophe-
none, 1, was added to this system and it has been
observed [5] that methylphenylcarbynol, 2, was formed
(see Eq. (1) and Table 1) with \95% chemoselectivity
(conversion max. 94%).

(1)

Keeping the reaction time constant, the influence of
the amino acids and pH (also used for tuning of the
coordination number) can be compared as shown in
Fig. 1. These data provide some remarkable hints at the
chemistry and eventual further development:
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1. Asymmetric induction, observed up to 75% ee, is
highly variable with the structure of the ligands.
Chemical yields are near quantitative (up to 94%) in
some cases.

2. Generally higher ee values are observed with combi-
nations where CrL2 type complexes are formed [4].
This hints at the cooperativity of some of the amino
acid ligands (Val, Leu, Phe, Asn). Tridentate ligands
such as Asp and His behave differently. These show
a change in the sense of chirality of the product [6]
at Cr:L=1:1 ratio, while the ee decreases with
Cr:L=1:2 (‘anti-cooperativity’).

3. The effects of D-amino acids were equal to those of
the L-enantiomers with opposite sign—as expected.

Mechanistic background [7] of the N–H–K reaction
indicate that the reduction described in this paper pro-
ceeds through an oxyalkylchromium(III) complex inter-
mediate (A). Current research in our laboratories showed
that this intermediate might be used for asymmetric
C,C-coupling [8], which is the final goal of this work.

Table 1

No. ee c (% (R)/(S))2 b (%)Reactive complexpHV (cm3)1 (mmol)Ligand (mmol)Cr(II) (mmol)L/D/DLLigand a

– 9 – 41 30– 5.0 Cr(H2O)2+ 0.0 0
2 IDA – 15 15 7 50 6.5 Cr(IDA) 71.2 0
3 Ala L 15 7.5 2 50 6.4 Cr(Ala)+ 43.7 40.5 (R)

40.9 (R)75.0Cr(Ala)29.5503.54 157.5L

5 L 7.5 15 3.5 50 9.5 Cr(Ala)2 95.3 37.8 (R)
D 7.5 15 3.56 50 9.5 Cr(Ala)2 72.9 35.7 (S)

60.6 (R)35.0Cr(Val)+6.15027 7.515LVal
72.9 (R)78.9Cr(Val)29.28 503.4157.5L

L 7.5 15 3.59 50 9.2 Cr(Val)2 78.3 73.1 (R)
L 7.5 15 3.610 50 d 74.6 (R)9.2 Cr(Val)2 67.4

7.5 15 3.6 50 e 9.2 Cr(Val)2 44.7 69.1 (R)L11
47.2 (R)12 81.0Cr(Val)210.2301105 f,gL

10 3.8 h 50 10.2 Cr(Val)25 f,h 18.4L 29.9 (R)13
L 12.5 7.5 2.2 5014 7.4Leu Cr(Leu)+ 58.4 10.2 (R)

15 L 5 15.1 2.3 50 8.8 Cr(Leu)2 54.9 16.9 (R)
Met16 L 12.5 7.5 2.1 50 6.6 Cr(Met)+ 17.6 12.5 (R)

16.2 (R)23.2Cr(Phe)+5.5602.817 96LPhe
L 6 13.2 2.8 6018 9.0 Cr(Phe)2 91.9 32.4 (R)

19 D 3 6.6 1.4 30 9.0 Cr(Phe)2 85.2 31.0 (S)
DL 620 082.213.2 Cr(Phe)29.0602.8

Tyr 2.8 5021 9.2 Cr(Tyr)+ 84.2 17.9 (R)7.512.5L

10 7.5 1.3 50 6.722 Cr(Trp)+Trp 66.7 21.6 (R)L

L 12.5 7.5 2.1 5023 7.4Pro Cr(Pro)+ 51.4 28.3 (R)
L 9.5 7.5 1.2 5024 6.6Hypro Cr(Hypro)+ 68.0 24.4 (R)

12.1 (S)64.2Cr(Asp)6.9502.225 7.512.5LAsp
26 L 6.4 14.8 2.62 50 8.6 Cr(Asp)2

2− 41.8 11.0 (S)
27 16.1 (R)11.1Cr(Asn)+5.9502.27.515LAsn

35.3Cr(Asn)29.0503.5 34.5 (R)157.5L28
L 12.5 7.5 2.8 50 9.229 Cr(Lys)+Lys 85.5 18.1 (R)

71.1 43.2 (S)30 His L 15 15 7 50 Cr(His)+6.5
31 38.2 (S)69.4Cr(His)+8.5503.57.57.5L

12 2.8 60 9.5 Cr(His)26 93.6L 19.1 (S)32
7.5 7.5 3.5 50 6.533 Cr(His)+ 73.8 39.7 (R)D

L 5 f 5 1 30 6.534 Cr(His)+ 89.4 18.9 (S)

a Iminodiacetate (IDA), alanine (Ala), valine (Val), leucine (Leu), methionine (Met), phenylalanine (Phe), tyrosine (Tyr), tryptophane (Trp),
proline (Pro), hydroxyproline (Hypro), aspartic acid (Asp), asparagine (Asn) lysine (Lys), histidine(His).

b 1H-NMR yields.
c Polarimetric and chiral GLC yields.
d After 30 s the reaction mixture was quenched by 5 cm3 5 mol dm−3 CH3COOH.
e After 30 s the reaction mixture was quenched by 5 cm3 5 mol dm−3 HCl.
f Aqueous CrCl2 solution was used for preparation.
g The solution of the complex was added dropwise to the solution of 1 within 60 min.
h The solution of 1 was added dropwise to the solution of the complex within 60 min.
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Fig. 1. Comparison of optical yields (ee%) obtained with some amino acids. (Numbers correspond to serial numbers of Table 1.)

It should be pointed out that in spite of the fact that
natural amino acids are easily accessible sources of
chirality [9], they are rarely used as chirogenic ligands
in transition metal-assisted or catalyzed reactions [1,10],
most probably due to the solubility problems.

Cr(II)-assisted organic reactions became important in
the synthesis of complex biogenic organic molecules [2]
but under non-biogenic conditions (solvents, ligands).
Our system represents the first step towards a
biomimetic [11] set-up, by using a high percentage of
water as solvent and natural amino acids as sources of
chirality.
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4 (1993) 1425. (e) J.-I. Kikuchi, Z.Y. Zhang, Y. Murakami, J.
Am. Chem. Soc. 117 (1995) 5383.

[11] (a) B. Honig, K. Sharp, A.-S. Yang, J. Phys. Chem. 97 (1993)
1101. (b) A. Lubineau, J. Augé, Y. Queneau, Synthesis (1994)
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